Deep learning models have become increasingly popular for a wide range of applications, including computer vision, natural language processing, and speech recognition. However, these models typically require large amounts of computational resources, making them challenging to run on low-power device...
Link Actions
I'm a little unsure on if I interpreted the results correctly. It seems like some things that TF Lite natively supports (apparently, their custom CNN model trained on MNIST) get really fast, and other things are a little hit-or-miss.
Pocket-sized Watercolor Altoids Tin: Now that I have made this little kit I can't stop using it! I just started with Instructables, so excuse me if I make any mistakes... :) You will need: Altoids regular tin Altoids Smalls Sculpey clay color of your choice Watercolor tube paints Any …
Prompting is the primary way to utilize the multitask capabilities of language models (LMs), but prompts occupy valuable space in the input context window, and repeatedly encoding the same prompt is computationally inefficient. Finetuning and distillation methods allow for specialization of LMs with...
Link Actions
Abstract: "Prompting is now the primary way to utilize the multitask capabilities of language models (LMs), but prompts occupy valuable space in the input context window, and re-encoding the same prompt is computationally inefficient. Finetuning and distillation methods allow for specialization of LMs without prompting, but require retraining the model for each task. To avoid this trade-off entirely, we present gisting, which trains an LM to compress prompts into smaller sets of "gist" tokens which can be reused for compute efficiency. Gist models can be easily trained as part of instruction finetuning via a restricted attention mask that encourages prompt compression. On decoder (LLaMA-7B) and encoder-decoder (FLAN-T5-XXL) LMs, gisting enables up to 26x compression of prompts, resulting in up to 40% FLOPs reductions, 4.2% wall time speedups, storage savings, and minimal loss in output quality. "
The prompt: "compress the following text in a way that fits in a tweet (ideally) and such that you (GPT-4) can reconstruct the intention of the human who wrote text as close as possible to the original intention. This is for yourself. It does not need to be human readable or understandable. Abuse of language mixing, abbreviations, symbols (unicode and emoji), or any other encodings or internal representations is all permissible, as long as it, if pasted in a new inference cycle, will yield near-identical results as the original text:"